An Introduction to Tire Modelling for Multibody Dynamics Simulation

SD 652
Professor John McPhee
University of Waterloo
Acknowledgement:

SAE Axis System

Aligning Torque (M_z)

Positive Camber Angle

Rolling Resistance Moment (M_y)

Overturning Moment (M_x)

Normal Force (F_z)

Tractive Force (F_x)
 Direction of Wheel Heading

Direction of Wheel Travel

Positive Slip Angle

Lateral Force (F_y)
ISO Axis System

- Spin axis
- Direction of wheel heading
- Direction of wheel travel
- Lateral force F_y
- Tractive force F_x
- Y_{ISO}
- X_{ISO}
Rolling Resistance (M_y)

Produced by hysteresis in tire tread and sidewall rubber

Normal force F_z is integral of the distributed load

$$M_y = (F_z)(\delta x)$$
Braking Force \((F_x) \)

\[
S = \frac{(V - wR)}{V}
\]

\(0 < S < 1\)
Braking Force \((F_x) \)

\[
S = \frac{(V - wR)}{V}
\]

\(0 < S < 1 \)

Longitudinal Stiffness, \(C_s \), is the slope of the \(F_x \) vs. \(S \) curve at \(S=0 \).
Driving Force (F_x)

$$S = \frac{(wR-V)}{wR}$$

$$0 < S < 1$$
Lateral Force (F_y) and Aligning Moment (M_z)

SIDE VIEW
- Pressure p
- Limit lateral stress μp
- Slipping starts
- Lateral stress
- Tyre contact patch
- Front
- Rear

TOP VIEW
- $M_z = F_y x_{pt}$
- Slipping starts
- Direction of wheel heading
- Direction of wheel travel
- Lateral stress
- Pneumatic trail

Aligning moment due to slip angle
- Lateral force
- Pneumatic trail
- Direction of travel

α
Lateral Force (F_y) and Aligning Moment (M_z)

Cornering Stiffness, C_α, is the slope of the F_y vs. α curve at $\alpha=0$
Effect of Camber Angle (γ) on Lateral Force (F_y)
Combined Slip (F_x AND F_y)
Overturning Moment (M_x)
Characterizing a Pneumatic Tire: Physical Testing

\[F_z = \text{normal force} \]

\[
\begin{align*}
F_x & = F_x(F_z, S, \alpha, \gamma) \\
F_y & = F_y(F_z, S, \alpha, \gamma) \\
M_x & = M_x(F_z, S, \alpha, \gamma) \\
M_y & = M_y(F_z, S, \alpha, \gamma) \\
M_z & = M_z(F_z, S, \alpha, \gamma)
\end{align*}
\]
Characterizing a Pneumatic Tire: Physical Testing
Characterizing a Pneumatic Tire: Physical Testing
Consider how F_x varies with F_z, S, α, γ: $20^4 = 160,000$ data points

$F_z = \text{normal force}$

$F_x = F_x(F_z, S, \alpha, \gamma)$

$F_y = F_y(F_z, S, \alpha, \gamma)$

$M_x = M_x(F_z, S, \alpha, \gamma)$

$M_y = M_y(F_z, S, \alpha, \gamma)$

$M_z = M_z(F_z, S, \alpha, \gamma)$

$x5 = 800,000$ data points
Tire Models:

Mathematical Functions to Fit Measured Data

Fiala: 6 parameters needed to describe a tire

\[
\begin{align*}
F_x &= F_x(F_z, S, \alpha, \gamma) \\
F_y &= F_y(F_z, S, \alpha, \gamma) \\
M_x &= M_x(F_z, S, \alpha, \gamma) \\
M_y &= M_y(F_z, S, \alpha, \gamma) \\
M_z &= M_z(F_z, S, \alpha, \gamma)
\end{align*}
\]

Pacejka 2002 : 117 parameters needed

\[
\begin{align*}
F_x &= F_x(S) \\
F_y &= F_y(\alpha) \\
M_x &= 0 \\
M_y &= M_y(F_z) \\
M_z &= M_z(\alpha)
\end{align*}
\]
How Tire Forces are Included In Multibody Vehicle Model

1. Define a point where tire forces and moments will act on the multibody model

\[
\vec{F}_C = \vec{F}_P \\
\vec{M}_C = \vec{M}_P + \vec{R}_{P/C} \times \vec{F}_P
\]
2. Determine an expression for the vertical tire force, F_z, which is required as an input to the tire model.

$$F_z = \max \left(k_z \delta_z + c_z \dot{\delta}_z, 0 \right)$$
How Tire Forces are Included In Multibody Vehicle Model

3. Establish vector directions for longitudinal and lateral components of tire force.

\[
\hat{u}_x = \frac{\hat{u}_{RevAxis} \times \hat{u}_z}{|\hat{u}_{RevAxis} \times \hat{u}_z|}
\]

\[
\hat{u}_y = \hat{u}_z \times \hat{u}_x
\]
How Tire Forces are Included In Multibody Vehicle Model

4. Determine kinematic inputs to tire model \((S, \gamma, \alpha)\)
5. Use a tire model to calculate \(F_x, F_y, M_x, M_y, M_z\)
An Introduction to Tire Modelling for Multibody Dynamics Simulation

SD 652
Professor John McPhee
University of Waterloo